Chinese Syntactic Reordering for Statistical Machine Translation
نویسندگان
چکیده
Syntactic reordering approaches are an effective method for handling word-order differences between source and target languages in statistical machine translation (SMT) systems. This paper introduces a reordering approach for translation from Chinese to English. We describe a set of syntactic reordering rules that exploit systematic differences between Chinese and English word order. The resulting system is used as a preprocessor for both training and test sentences, transforming Chinese sentences to be much closer to English in terms of their word order. We evaluated the reordering approach within the MOSES phrase-based SMT system (Koehn et al., 2007). The reordering approach improved the BLEU score for the MOSES system from 28.52 to 30.86 on the NIST 2006 evaluation data. We also conducted a series of experiments to analyze the accuracy and impact of different types of reordering rules.
منابع مشابه
Tree Kernel-based SVM with Structured Syntactic Knowledge for BTG-based Phrase Reordering
Structured syntactic knowledge is important for phrase reordering. This paper proposes using convolution tree kernel over source parse tree to model structured syntactic knowledge for BTG-based phrase reordering in the context of statistical machine translation. Our study reveals that the structured syntactic features over the source phrases are very effective for BTG constraint-based phrase re...
متن کاملRule-Based Preordering on Multiple Syntactic Levels in Statistical Machine Translation
We propose a novel data-driven rule-based preordering approach, which uses the tree information of multiple syntactic levels. This approach extend the tree-based reordering from one level into multiple levels, which has the capability to process more complicated reordering cases. We have conducted experiments in English-to-Chinese and Chinese-to-English translation directions. Our results show ...
متن کاملA Unified Model for Soft Linguistic Reordering Constraints in Statistical Machine Translation
This paper explores a simple and effective unified framework for incorporating soft linguistic reordering constraints into a hierarchical phrase-based translation system: 1) a syntactic reordering model that explores reorderings for context free grammar rules; and 2) a semantic reordering model that focuses on the reordering of predicate-argument structures. We develop novel features based on b...
متن کاملImproving Reordering for Statistical Machine Translation with Smoothed Priors and Syntactic Features
In this paper we propose several novel approaches to improve phrase reordering for statistical machine translation in the framework of maximum-entropy-based modeling. A smoothed prior probability is introduced to take into account the distortion effect in the priors. In addition to that we propose multiple novel distortion features based on syntactic parsing. A new metric is also introduced to ...
متن کاملUsing unlabeled dependency parsing for pre-reordering for Chinese-to-Japanese statistical machine translation
Chinese and Japanese have a different sentence structure. Reordering methods are effective, but need reliable parsers to extract the syntactic structure of the source sentences. However, Chinese has a loose word order, and Chinese parsers that extract the phrase structure do not perform well. We propose a framework where only POS tags and unlabeled dependency parse trees are necessary, and ling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007